Are gait variability and stability measures influenced by directional changes?
نویسندگان
چکیده
BACKGROUND Many gait variability and stability measures have been proposed in the literature, with the aim to quantify gait impairment, degree of neuro-motor control and balance disorders in healthy and pathological subjects. These measures are often obtained from lower trunk acceleration data, typically acquired during rectilinear gait, but relevant experimental protocols and data processing techniques lack in standardization. Since directional changes represent an essential aspect of gait, the assessment of their influence on such measures is essential for standardization. In addition, their investigation is needed to evaluate the applicability of these measures in laboratory trials and in daily life activity analysis. A further methodological aspect to be standardized concerns the assessment of the sampling frequency, which could affect stability measures. The aim of the present study was hence to assess if gait variability and stability measures are affected by directional changes, and to evaluate the influence of sampling frequency of trunk acceleration data on the results. METHODS Fifty-one healthy young adults performed a 6-minute walk test along a 30 m straight pathway, turning by 180 deg at each end of the pathway. Nine variability and stability measures (Standard deviation, Coefficient of variation, Poincaré plots, maximum Floquet multipliers, short-term Lyapunov exponents, Recurrence quantification analysis, Multiscale entropy, Harmonic ratio and Index of harmonicity) were calculated on stride duration and trunk acceleration data (acquired at 100 Hz and 200 Hz) coming from straight walking windows and from windows including both straight walking and the directional change. RESULTS Harmonic ratio was the only measure that resulted to be affected by directional changes and sampling frequency, decreasing with the presence of a directional change task. HR was affected in the AP and V directions for the 200 Hz, but only in AP direction for the 100 Hz group. CONCLUSION Multiscale entropy, short term Lyapunov exponents and Recurrence quantification analysis were generally not affected by directional changes nor by sampling frequency, and could contribute to the definition of a fall risk index in free-walking conditions.
منابع مشابه
Reliability and Minimum Detectable Change of Temporal-Spatial, Kinematic, and Dynamic Stability Measures during Perturbed Gait
Temporal-spatial, kinematic variability, and dynamic stability measures collected during perturbation-based assessment paradigms are often used to identify dysfunction associated with gait instability. However, it remains unclear which measures are most reliable for detecting and tracking responses to perturbations. This study systematically determined the between-session reliability and minimu...
متن کاملMeasurement strategy and statistical power in studies assessing gait stability and variability in older adults
BACKGROUND Gait variability and stability measures might be useful to assess gait quality changes after fall prevention programs. However, reliability of these measures appears limited. AIMS The objective of the present study was to assess the effects of measurement strategy in terms of numbers of subjects, measurement days and measurements per day on the power to detect relevant changes in g...
متن کاملSensitivity of trunk variability and stability measures to balance impairments induced by galvanic vestibular stimulation during gait.
For targeted prevention of falls, it is necessary to identify individuals with balance impairments. To test the sensitivity of measures of variability, local stability and orbital stability of trunk kinematics to balance impairments during gait, we used galvanic vestibular stimulation (GVS) to impair balance in 12 young adults while walking on a treadmill at different speeds. Inertial sensors w...
متن کاملLocal dynamic stability versus kinematic variability of continuous overground and treadmill walking.
This study quantified the relationships between local dynamic stabiliht and variabilitr during continuous overground and treadmill walking. Stride-to-stride standard deviations were computed from temporal and kinematic data. Marimum finite-time Lyapunov exponents were estimated to quantify local dynamic stability. Local stability of gait kinematics was shown to be achieved over multiple consecu...
متن کاملToward ambulatory balance assessment: estimating variability and stability from short bouts of gait.
Stride-to-stride variability and local dynamic stability of gait kinematics are promising measures to identify individuals at increased risk of falling. This study aimed to explore the feasibility of using these metrics in clinical practice and ambulatory assessment, where only a small number of consecutive strides are available. The concurrent validity and reliability were assessed compared to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2014